

A ROUTING ALGORITHM FOR URBAN ADVISORY SYSTEM

Vălean Honoriu
Automation Department

Technical University of Cluj-Napoca
(TUC-N)

Cluj-Napoca, Romania
Honoriu.Valean@aut.utcluj.ro

Leţia Tiberiu
Automation Department

Technical University of Cluj-Napoca
(TUC-N)

Cluj-Napoca, Romania
Tiberiu.Letia@aut.utcluj.ro

Aştilean Adina
Automation Department

Technical University of Cluj-Napoca
(TUC-N)

Cluj-Napoca, Romania
Adina.Astilean@aut.utcluj.ro

Abstract: The routing problem in urban traffic becomes
very important due to the fast growth of car number. The
Urban Driving Advisory System (UDAS) as a
component of a Real-Time Information and Control
System (RTICS), assists drivers to follow a good path
for arriving to the destination. The main function of the
UDAS is to find the best way to travel from one place to
another, with respect of various metrics, such as
distance, travel time, etc. In the paper, a Dijkstra based
routing algorithm is presented. The algorithm uses a
penalty function which takes into account the actual
traffic on the streets, to increase or decrease the weigth
of the street graph links.

Key words: traffic control, communication systems,
real-time systems, shortest path algorithms.

INTRODUCTION

Vehicle traffic control becomes important with the
increase of the number of participants (i.e. cars). Vehicle
traffic control is divided into urban traffic control (Leţia
et al. 2002a) and road traffic control (Cremer and Zhang
1993). The difficulties in solving these problems are
given by the continuous (and significant) variation of the
characteristics and parameters of the traffic. These
depend on the period of the day and on the days
(working or holiday). So, it is difficult to find one model
that describes completely the entire system during a long
period of time. Instead of this, a set of models that
depends on the time can be used.

The continuous modification of the characteristics and
parameters of the traffic implies the change of the
control algorithms with those that are most appropriate
for the current situation.

The activities involved by this research include the
design of the information system, the traffic control
system and the traffic surveillance system for a medium
size town. This implies: the congestion prediction and
avoidance, the control of the traffic lights, the best route
advice, the dynamic route guidance, the estimation of the
arrival times etc.

To get these aims, the following were achieved:

• the models of crossroads and of the traffic
system (Leţia et al. 2002b);

• the adaptation of the models to continuous
system changes;

• the evaluation of the performances of the
control algorithms (Hush 2000; Gerken 2000)
to be able to choose the best algorithm and

• the best control algorithms according to
different situations.

Besides the control of the colour of the traffic lights that
determines the system behaviour, route planners give
detailed instructions on the sequence of roads to follow
to reach a particular destination. The information may be
presented via mobile data services and may include:

• advisory related to the best route taking into
account the minimum time, minimum distance
or a combination criteria of these two;

• the expected arrival time at destination;
• warning about current jamming etc.

THE UDAS STRUCTURE

Mobile Network
XML

WMLRTICS

SIM

JSSE WAP/GPRS Web
Server

Updating
Server

SIM

J2ME ODBC DBS

TCP/IP Local
ClientUDAS

Data Base
Socket

Figure 1. The software architecture of UDAS

mailto:Honoriu.Valean@aut.utcluj.ro
mailto:Tiberiu.Letia@aut.utcluj.ro
mailto:Adina.Astilean@aut.utcluj.ro

The general structure of UDAS can be found in (Leţia et
al. 2003).

The software architecture of the UDAS is represented in
the Fig. 1. The abbreviations used in the figure have the
following meanings:

• RTICS – Real Time Information and Control
System;

• UDAS – Urban Advisory System;
• ODBC – Open Database Connectivity;
• DBS – Database Server;
• JSSE – Java Secure Socket Extension;
• SIM – Subscriber Identity Module;
• J2ME – Java 2 Platform Micro Edition;

More details of the UDAS communication structure can
be found in (Aştilean et al. 2002; Aştilean et al. 2003).
The notions are used according to (Bettstetter
1999;Flickenger 2000; Muratore 2000)

THE SHORTEST PATH PROBLEM

The computation of shortest path over a network has
been the target of many research efforts (Dijkstra, 1959;
Goldberg and Radzik, 1993;Glover, Klingman and
Phillips, 1985; Chabini, 1997). These efforts have
resulted in a number of different algorithms and a
considerable amount of empirical findings with respect
to performance (Chabini 1997; Zhan and Noon 1998).
To solve the shortest path problem, there are a lot of
requirements that should be taken into account for
choosing the better algorithm:

• the optimisation may be performed with respect
to various constraints, usually distance, travel
time, fuel consumption, etc. ;

• traditional algorithms may impose an
unacceptable long computational time when
applied to realistic road networks;

• additional constraints may be imposed, because
most people prefer to travel on main roads;

Many the suggested solutions to the shortest path
problem during the last four decades are based on the
Dijkstra algorithm and its variants . However, in a
practical context, these algorithms are not necessarily
finding a best solution on a road network. If the
algorithm minimizes the distance, Dijkstra{'}s algorithm
guarantees to find the best route. But, if the requirement
is to minimize the travel time, the algorithm fails,
because it cannot know how much time will have
elapsed since the start of the travel when any particular
link is traversed. Another problem of the algorithm is the
following: the best solution from the point of view of the
distance may be a very poor solution from the point of
view of the time and the best solution from the point of
view of the time may be a again, a very poor solution
from the distance point of view.

Instead of finding the best solution considering the
distance or the best solution considering the travel time,
the paper proposes a Dijkstra algorithm which finds the
best solution on distance and time, that takes into
account the actual context in the street network.

THE PROPOSED ALGORITHM

For defining the shortest path problem, the following
requirements are made:

• the solution must be provided off-line, because
it is accessible via SMS and also, is
uncomfortable for the drivers to change the
route during the travel;

• the solution must take into account not only the
actual street map stored in the database, but also
the actual context on the streets: closed roads,
congestions, one-way restrictions, bottle-necks,
etc.;

• the solution must act as traffic formatter, for
avoiding the congestion and discharging

• the control system implemented on the Real-
Time Information and Control System (RTICS)
(Leţia et al. 2003);

The street network is represented as a graph. Each vertex
on the graph is oriented, denoted by (i,j), e.g. the link is
starting form node i and ending in node j. Each node (i,j)
is label with a label dij, representing the cost of the link.
A two-ways street is represented by two links, (i,j) and
(j,i), where only in particular cases dij=dji. A simple
crossroad is represented by a graph consisting in 5 nodes
and 6 links, and so on (Fig. 2).

d

One-Way Street
i j

i

Simple crossroad

j

k

j’i’

d ij

Two-Ways Street

ji

ij

d ji

dii’

dj’i dji’

dj’j

di’k dkj’

i

i

i

j

j

j
k

Figure 2. Different graphs related to the streets

The choice to consider one-to-one shortest path
computation is motivated by the fact that the most of the
travellers have different starting and ending points and in
the case of time-dependent networks (networks in which
edge weights vary in time) the shortest path tree will be
different for each traveller.

 The algorithm consists in the following steps:

• build the associated graph from the geographic
information stored in the database;

• label the links with the costs dij=δij, where δij is
the distance (in km.) between two nodes;

• for each link (j,i), compute a penalty function pij
given by

)25(2.01

)max(
)max(

−−+
−=

ije
p ij

ijij υ

δ
δ (1)

where max(δij) is the length of the longest street
and νij is the actual average speed reported by
RTICS for the correspondent street, at the
moment. The accepted maximum speed on the
streets is 50 Km/h. A sygmoid penalty function
has been choose because of the smoothness of
the shape;

• compute the new label of the links as

ijijij pd += δ (2)

If on a street the average speed is very low (i.e.
a congestion is imminent), the power of the link
for the correspondent link will be significantly
increased;

• find the shortest path using a variant of
Dijkstra’s algorithm (Morris 1998):
� initialise d and pi;
� set S to empty;
� while there are still vertices in V-S
� sort the vertices in V-S according to

the current best estimate of their
distance from the source;

� add the closest vertex in V-S, to S;
� relax all the vertices still in V-S

connected to the last vertex added in S;

In Fig. 3 is
max(δij)=2.5
Km/h.

When UDA
computing
following s

build_graph
 for each lin

 dij=δij;
 compute_penalty_function(pij);
 dij=dij+pij;

First, the UDAS thread build the graph g=G(E,V,L),
where E=Edges(g) is the set of edges, V=Vertices(g) is
the set of vertices and L=Links(g) is the set of links.
Then computes the weights dij for all the links (i,j) from
L, taking into account the geographic information stored
in database and the computed penalty functions. Now,
the shortest path can be computed (Morris 1998):

shortest_paths(Graph g, Node s)
 initialise_single_source(g, s)
 S = { 0 }; /* Make S empty */
 Q= Vertices(g); /* Put the vertices in a PQ */
 while not Empty(Q)
 j= ExtractCheapest(Q);
 AddNode(S, i); /* Add i to S */
 for each vertex i in Adjacent(j)
 relax(j, i, djk);

initialise_single_source(Graph g, Node s)
 for each vertex i in Vertices(g)
 g.sd[i] = infinity;
 g.pi[i] = null;
 g.sd[s] = 0;

 relax(Node j, Node i, double dij)
 if sd[i] > sd[j] + dij then
 sd[i] = sd[j] + dij;
 pi[i] := j;

The used notation have the following meanings:

• S – the set of vertices whose shortest paths from
the source have already been determined;

• sd - array of best estimates of shortest path to
each vertex;

• pi - an array of predecessors for each vertex;

0

The initialise_single_source()function sets up the graph
so that each node has no predecessor (pi[i] = null) and
the estimates of the cost (distance) of each node from the
source (sd[i]) are infinite, except for the source node
itself (sd[s] = 0). The relax() function checks whether the
current best estimate of the shortest distance to i (sd[i])
can be improved by going through j (i.e. by making u the
predecessor of i).

average speed

d
ist

a
nc

e

0 10 20 30 40 5
0

0.5

1

1.5

2

2.5

Figure 3. The penalty function
shape
 represented the penalty function shape for
 Km and a maximum allowed speed of 50

S receive a request, it opens a new thread for
the path. The UDAS will execute the

et of instructions:

(Graph g)
k (i,j) in (g)

CASE STUDY

For testing the routing algorithm, the urban area map
presented in Fig. 4 was taken into account. The names
of the streets are given by numbers and letters. Ai means
the ith Avenue, Bj the jth Boulevard and Sk the kth Street.
As shown in (Aştilean et al. 2003), customers send their
request and receive the answers using SMS. Because the
origin and destination points cannot be localized
precisely (as an exactly marked point on the urban map),

http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS210/dij_pred.html

a request has to be formulated indicated the nearest
crossroads for departure (the circle marked point) and for
arrival (the square marked point). Consequently, the two
end points, are represented as the starting and the ending
point on the graph. The entire monitoring and control
system acts based on the coded indicatives of the
crossroads and streets, the corresponding conversion
being performed in each case. To calculate the minimum
costs, the RTICS determine the average speeds and
periodically transmits the information to the UDAS. The
main part of the considered urban area corresponds to a
real map.

The simulation program generates a random number of
cars on the streets, with a random behaviour (travel
direction, speed). The time for green and red lights on
the crossroads is fixed, and crossroads are considered as
FIFO queues. The extraction of a car from the queue is
done with a constant rate. Two examples of routing are
presented (Fig. 5 and Fig. 6), corresponding to the same
starting and ending points, but at two different moments.

 As can be seen, the two routes are not identical. In the
first case, the travel distance is shorter, but the time is
longer, probably due to a smaller average speed. In the
second case, the distance is a little longer, but the time is
shorter. The algorithm will generate all the time, a
suboptimal solution, but the best solution for the actual
context on the map.

Figure 6. Indicated route for simulation 1

B1

B2

B3

A1

B4

A2

A3

A4

S1

S2

S3

S4

S5

S6
S7

S8
S9

S10

S11

S12

Figure 4. The urban map

The average time for finding the best path for the given
graph on a P4/1700MHz computer was about 3 ms.

CONCLUSIONS

Figure 5. Indicated route for simulation 1

The paper presents a solution for the problem of urban
vehicle routing, which transforms an on-line routing
problem in an off-line problem.

The algorithm used in the paper is a Dijkstra algorithm
because of the simplicity of implementation. The
distances marked on the links of the graph are not
constant. They are computed by taking into account not
only the length of the correspondent streets, but also the
time-restrictions (as penalty functions) due to the high
traffic or congestions, via the average speed reported on
each street.

The algorithm gives a suboptimal solution for the
shortest path problem and acts as primary traffic
formatter, for avoiding the congestions.

The penalty function presented in the paper could be
applied not only to the Dijkstra algorithm but also to
other shortest path algorithms.

REFERENCES

Aştilean, A., Avram, C., Leţia, T.S., Hulea, M., Vălean,
H. (2002) Using Mobile Data Services for Urban
Driving Advisory Systems. Mobile Open Society
through Wireless Telecommunications Conference
Technology for Mobile Society, pp. 4, Warsaw, Poland.

,

Aştilean, A., Leţia, T.S., Avram, C. (2003) Information
and communication strategies for Urban Driving
Advisory System. Proc. of 14th International Conference
on Control Systems and Computer Science (CSCS-14),
pp. 523-528, Bucharest, Romania.

Bettstetter, C., Vögel, H. J., Eberspächer, J. (1999).
GSM Phase 2+ General Packet Radio Service GPRS:
Architecture Protocols, and Air Interface, IEEE
Communications Surveys.

Chabini, I. (1997). Discrete dynamic shortest path
problems in transportation applications: Complexity and
algorithms with optimal run time. Transportation
Research Records.

Cremer, M., Zhang X. (1993). System Architectures for
Complex Road Traffic Information and Control Systems.
Proc. of IFAC 12th World Congress, Sydney, 1993, Vol.
9, pp.229-232.

Fidge, C.J. Real-Time Schedulability Test for
Preemptive Multitasking. Real-Time Systems, 14, p. 61-
93, 1998.

Flickenger, R. (2000) Building Wireless Community
Networks, O’Relly & Associates, Inc.

Gerken J. (2000) A Practical Approach to Managing
Intersection Traffic Data for Large Scale Studies, Mid–
Continent Transportation Symposium.

Husch, D. (2000). “Intersection Capacity Utilisation”,
www.trafficware.com.

Letia, T. S., Astilean, A., Avram, C., Hulea, M., Valean,
H. (2002a). Urban traffic control system, 2002 4th
International Workshop on Computer and Information
Technology, University of Patras, Greece, September.

Letia, T. S., Astilean, A., Hulea, M., Avram, C. and
Valean, H. (2002b). Object street traffic model.
Proceedings of 2002 IEEE-TTTC International
Conference on Automation, Quality and Testing,
Robotics, Cluj-Napoca, Romania, Vol. 1, pp. 170-175.

Letia, T. S., Hulea, M., Avram, C. and Valean, H.
(2003). Real-time traffic information and control system.
27th IFAC/IFIP/IEEE Workshop on Real/Time
Programming WRTP’03, pp. 205-210, Poland.

Morris J (1998). Djikstra's algorithm
morris@ee.uwa.edu.au

Muratore, F. (2000). UMTS Mobile Communications for
the Future, John Wiley & Sons, LTD.

Zhan, B.Y.F. and Noon C.E. (1998). Shortest path
algorithms: An evaluation using real road networks.
Transportation Science.

http://www.trafficware.com/

	A ROUTING ALGORITHM FOR URBAN ADVISORY SYSTEM
	
	
	
	
	
	REFERENCES
	Astilean, A., Avram, C., Letia, T.S., Hulea, M., Valean, H. (2002) Using Mobile Data Services for Urban Driving Advisory Systems. Mobile Open Society through Wireless Telecommunications Conference, Technology for Mobile Society, pp. 4, Warsaw, Poland
	Astilean, A., Letia, T.S., Avram, C. (2003) Information and communication strategies for Urban Driving Advisory System. Proc. of 14th International Conference on Control Systems and Computer Science (CSCS-14), pp. 523-528, Bucharest, Romania.

	Bettstetter, C., Vögel, H. J., Eberspächer, J. �

